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Statistical Tests for Person Misfit in Computerized Adaptive Testing

Summary

In case both the null and alternative model are exponential family models, an unbiased

uniformly most powerful test can be based on the minimal sufficient statistics of the

alternative model (Lehmann, 1986). Strictly speaking, this approach is not valid in the

framework of the two parameter logistic model (2PL), since this model does not define an

exponential family. However, the notion of using statistics related to the parameters of an

alternative model as the basis of a test is intuitively appealing, even though a uniformly most

powerful test probably does not exist. Below, e will be the weighted ML estimate (Warm,

1989). In an adaptive testing environment, the following alternatives to the 2PL will be

considered.

1 Non-invariant abilities: in the alternative model it is assumed that the 2PL is valid during

the whole testing session, but that the respondent's ability parameter changes during test-

taking. More specifically, it will be assumed that a person has two person parameters, say

0, and 02; the first parameter governs the responses on the first half of the test, the second

parameter governs the second part. The test will be based on the statistic T = (Tp T2) ,

where T1 and 7'2 are the unweighted sum scores on the first and second part, respectively.

Of course, splitting the test into two halves is arbitrary, the practitioner can use any non-

trivial, suitable partition of the test.

2 Lack of local stochastic independence: it is assumed that the probability of a correct

response on an item is augmented by a previous correct response. This is modeled by

introducing a transfer parameter S, such that the probability of two consecutive responses

x, and x,+1 is given by

P( X; =x;, X x,,10, a, 0, 5) oc exp[x; (00 13, ) + (ai-fie Pi+1)+ xixi+181

The test will be based on the statistic L =
1.1
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3 Person-specific item parameters. The test will be based on classifying the probability of the

observed response pattern x=(xi, ,-;, ,xk), P(X xre' a, 0) ,
among all possible values

P(y = Y9,a,(3), where Y is a possible response pattern. The statistic will be denoted by X.

Significance probabilities for the tests based on T, L and X are calculated by simulating their

respective distributions under the null-hypothesis. Simulation studies were carried out to

assess the power of the proposed tests. One important point here is that the item

administration design is contingent on the responses given. It is well known (see, for instance,

Mislevy, 1986, and Glas, 1988) that the stochastic nature of the design does not threaten the

consistency of the estimates. This is due to the fact that in adaptive testing unobserved

responses are missing at random (MAR, Rubin, 1976). Therefore, for the estimation of model

parameters the process that causes missing data can be ignored. However, in adaptive testing

the data are not observed at random (OAR, Rubin, 1976). As a result, the set of possible

response patterns given the design is only a subset of the possible response patterns in a fixed

design. The impact of these restrictions was one of the focuses of the simulation studies

performed.

Results

1 For proper simulation of the distributions of T, L and X the stochastic nature of the design

has to be taken into account.

2 The accuracy with which the distributions of T, L and X can be simulated seems to depend

on the model considered (RM versus 2PL) and the distribution of item parameters in the

item bank.

3 The power of the tests under the alternative model is very low. Only the power of the test

based on T under the non-invariant abilities model reaches a non-trivial value.

4 The error in the estimation of 0 is not much increased by the model violations introduced,

so the estimates are quite robust.

It must be stressed that the second and third result are preliminary: especially the simulation

algorithm for the distribution of T is not yet completely satisfactory.

5
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Introduction

Person-fit analysis (or appropriateness measurement) is concerned with the detection of re-

sponse patterns that are unusual (nonfitting) given what is expected under an item response

theory (IRT) model. When a person's response pattern is nonfitting according to the model, it

is questionable whether the test score is an adequate description of the trait being measured.

Typical forms of aberrant response behavior are guessing and cheating (e.g., as a result of item

or test preview) which may result in spuriously high or spuriously low test scores.

Recently, several person-fit statistics have been proposed to detect nonfitting response

patterns (e.g., Drasgow, Levine, & Williams, 1985, Molenaar & Hoijtink, 1990, Meijer,

1994). A popular approach is to determine the (log)likelihood of a response pattern and to

classify response patterns with an extreme likelihood statistic as nonfitting. Note that follow-

ing this approach, it is only tested whether a response pattern is unlikely given the model: the

type of nonfitting response behavior is not identified. In the context of the Rasch (1960)

model, Klauer (1995) addressed this problem by specifying alternative models for response

behavior and testing the null hypothesis of model conform behavior against the specified al-

ternative model.

Klauer (1995) considered three types of nonfitting response behavior: violations of local

stochastic independence between the items, violations of invariant ability across subtests of

the total test, and person-specific item discrimination. For these three model violations, person

tests were constructed and a power analysis was performed. A limitation of the Klauer (1995)

study is that it was restricted to fixed-format tests and to the Rasch model. The present study

was designed to generalize the approach followed by Klauer (1995) to an adaptive testing set-

ting using the two-parameter logistic model (2PL) as a null model.

This report is organized as follows. First, the approach by Klauer is presented in Section 2.

Second, some problems with respect to the generalization of his approach to an adaptive test-

ing situation are discussed. An alternative approach is presented in Section 3. Finally, the re-

sults of a power study and the consequences for person-fit measurement in adaptive testing

situations are discussed in Section 4.

6
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The Rasch model and Uniformly Most Powerful Tests

To test normal response behavior against a specified alternative model, Klauer (1995) con-

structed uniformly most powerful (UMP) tests using the Rasch model. Because UMP tests are

central in this approach the principle of these tests will be characterized first.

The Rasch model is based on the assumptions of local stochastic independence, uni-

dimensionality of the latent trait 0, sufficiency of a respondent's unweighted sum score and

some, technical assumptions beyond the scope of the present paper. Let 13; denote the diffi-

culty for item i, where i=1, ...,k. Then the probability of a correct response on item i given 0,

according to the Rasch model (RM) can be written as

P(9) exple 13,
P

1+ explA 13, }
(1)

It is well-known that the RM belongs to the exponential family of distributions.

The general derivation of a UMP test in an exponential family model proceeds as follows. Let

x=(xl,...,xk) be a realization of X=(X1,...,Xk) and let and T1 be two parameters. The likeli

hood of the two-parameter exponential family can then be written as,

P( X = 34,11) =11(4,11)h(x) exkl T(x) + E,R(x)}, (2)

where 1.44,11) and h(x) are normalizing functions and T(x) and R(x) sufficient statistics. Con-

sidering the factorization criterion (e.g., Lindgren, 1993, p.231), the statistics T(x) and R(x)

are minimal sufficient statistics for the parameters

A uniformly most powerful (UMP) test (to for testing Hom=10 against HI 31#110 for some

parameter ri in exponential family of distributions can be derived as follows (Lehmann, 1959).

Let the vector X be distributed according to the exponential family of distributions, i.e. Equa-

tion 3 is generalized to

P( X = xI0,n) = 03(0;g) exp{ii T(x) + ;R,(x) }. (3)
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The UMP test for testing the hypothesis Ho:il=ro vs. Hinl*Tio with size a is given by (I)(x),

satisfying

0(x) =

0 when c,(r) < T(x) < c2(r),

y, (r) when T(x) = c, (r) for i = 1,2,

I otherwise,

(4)

where R(x) = r is given and the functions c(r) and y(r) are determined by solving the fol-

lowing equations

E[0(X)Irm = = a,

E[T(X)0(X)Irm = = aE[T(X)1r,r1=110].
(5)

So, Ho is accepted when the test statistic T takes values between ci and c2, and randomization

is applied in the case of T=ci, for i=1,2.

This approach can be generalized to the framework of the RM as follows. Let x, be the

score on a dichotomously scored item i, where a 1 denotes a correct or keyed response and 0

otherwise. Further, x=(xl,...,xk) is a realization of a vector X=(Xi,...,Xk) of responses to k

items, 6 is a person parameter, and 13i are item parameters. Then, the Rasch model as defined

in Equation 1 can be written as

P(X = x10) = 41[1+ exp{0-13,}1 l}xexplE13,xjxexpf0Ex,
i=1

g(e) Mx)

= g(0)0x)exp{OR(x)},

(6)

where R(x) = Ex, is the raw score of the response vector x; R is a minimal sufficient statis-

tic for the ability parameter O.

Klauer (1995) constructed uniformly most powerful person fit tests for three specific alterna-

tive models in a fixed format setting; these models are generalizations of the RM testing the



Statistical Tests in CAT 7

assumptions of local stochastic independence, uni-dimensional abilities across subtests of the

total test and the invariance of item discriminations across the items of the test. These alterna-

tive models are member of the two-dimensional exponential family. Below, three different

alternative models will be introduced.

Non-Invariant Abilities across Subtests of the Total Test

An assumption of the RM is the invariance of the ability parameter 9. When the test is split

into two subtests Al and A2, the abilities on the two subtests will be the same, that is, 01=02.

The model used as an alternative model with invariant abilities contains a multidimensional

ability parameter. Consider the simplest (two-dimensional) case, where the test is divided into

two subtests Al and A2 and the ability parameter can be written as 0=(01,02); thus the exami-

nee has ability 01 on subtest Al and ability 02 on subtest A2. Let Ri(x) the raw score obtained

from the subtest Ai for j=1,2, R(x) the raw score of the total test, and 110,T1) and h(x) suitable

functions. Then, after some algebra and for known item parameters, the model with a multi-

dimensional ability parameter can be written as,

P( X = x10,I1) = µ(9Z,9, 92)h(x) exp{(01 )R1 (X) + 02R(X)} (7)

R,(x) and R(x) are sufficient statistics for 1=01-02 and 0=02 respectively. When 11=0, that is

01=02, the model becomes the RM. Positive values of 11 indicate that 01>02, this can be the

case when an examinee has pre-knowledge about one subtest and therefore the score on that

subtest is much higher than the score on the rest of the test. Thus, the parameter 11 describes

the size and direction of the differences of the ability parameters. Nonfitting response behav-

ior like guessing, carelessness, sleeping and fumbling can also be the cause of non-invariant

abilities.

Local Stochastic Dependence

Another assumption made for the RM is the assumption of local stochastic independence. The

following model of Jannarone (1986) represents a violation of local stochastic independence

P(X = x10,1) =140,11)h(x)expt11t xix,,, +0R(x)},
i.1

9

(8)
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where again 1.40,1) and h(x) are normalizing functions. Therefore L(X) = txix, is a suf-
1=1

ficient statistic for parameter 11. The RM is obtained for 11=0, positive values of n occur when

for example an item provides extra information that is useful for answering the next item.

Thus parameter ri describes the size and direction of the violation of the local stochastic inde-

pendence assumption.

Person-Specific Item Discrimination

The third assumption of the RM is that the item discriminations are invariant across the items

of the test. When ri is used as a parameter indicating the overall level of the item discrimina-

tion, an alternative model is

P( X = x10, ) = 111[1 + exph(0 13, exp{
i.1

(9)

where again the item parameters are considered known.

For 11 =1 the RM is established, when 0<n<1 the overall level of item discrimination is

less then the overall discrimination level in the RM, and when 11 >1 the overall level of item

discrimination is higher than the overall level of discrimination in the RM. Thus, the parame-

ter 11 describes the size and direction of the violation of invariant item discriminations.

Rewriting Equation 8 to the form of Equation 2, results in

P(X = x10,1) = 1.1.(0,1) exp{niI3,x, OR(x)}, (10)

where 11 is absorbed in 0, i.e. 0:=110. Therefore, the statistics M(X) =±13, X, and R(x), are
i=1

sufficient statistics for the person specific parameters 11 and 0.
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Limitations for the Two Parameter Logistic Model and Adaptive Testing

The two-parameter logistic model (2PL) is a more general model than the RM. Let a, be the

item discrimination of item i. Then the probability of a correct response to item i according to

the 2PL is given by

P( X; = 119) - exp{a, (0 Pi)}

and the joint distribution of the observed response pattern x can be written as

Frit T 1_, 11
pi(x= xle)=Lnk 1 + exploit; (e 13, )1) lexp{-24a, ,x, Ilexp

= ii(e)h(x) exp{e W(x)}, (12)

where W(X) is the weighted score according to x with a; as weights, where a; are unknown

item parameters to be estimated. In the 2PL, the total weighted score W is not a sufficient sta-

tistic for the ability parameter e, because W depends on ai. Further, the conditional distribu-

tion of the sample, given W, depends on the unknown item parameters a,. For known item pa-

rameters ai and I3i, W is a minimal sufficient statistic, although Andersen (1977) has shown

that only for certain values of ai, conditioning on W leads to a non-trivial likelihood. In that

case, W can be used for the construction of UMP tests.

In an adaptive testing situation it is difficult to construct sufficient statistics. Adaptive

testing is the limiting case of multistage testing, where each test consists only one item. Glas

(1988) showed for the RM in a two-stage testing design that the conditional probability of the

sample X given the raw score R, is not independent of 0 and therefore R is not a sufficient

statistic for parameter 0.

Because the absence of a minimal sufficient statistic, it is not sure whether a UMP test

for the RM exists in an adaptive testing situation. Even though a uniformly most powerful test

probably does not exist, the notion of using statistics related to the parameters of an alterna-

tive model as the basis of a test is intuitively appealing. This point will be resumed below.
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Let the design, I, be the observed sequence an examinee responded to (a vector of item

numbers). In an adaptive test, item selection is based on the responses on previous items.

Therefore, the observed design I is dependent on the observed vector of responses X. The

missing data are the responses on all the non-selected items. Ignorability of the process that

causes missing data concerns the consistency of the estimates of the model parameters. In

adaptive testing unobserved responses are missing at random (MAR, Rubin, 1976, Mislevy,

1986), therefore, for the estimation of model parameters the process that causes missing data

can be ignored. However, the data are not observed at random (OAR, Rubin, 1976). This

means that the set of possible response patterns given the design, {XII }, is only a subset of the

possible response patterns in a fixed design. In a fixed design the probability of the observed

sequence of items, g(I), equals one, because every examinee responded to the same items. As

a result f (X, I) = f (XII) g(I) = f where f (X, I) is the joint probability of X and I, and

f (XII) the conditional probability of X given L In adaptive testing g(I) < 1, because tlie items

administered are different for every examinee, therefore, f (X, I) = f (X11)g(I) # f (XII) .

Method

This simulation study consists of two parts. The first part concerns the ignorability of the

process that causes missing data and the impact of the fact that the data in adaptive testing are

not OAR. Furthermore, the power of the proposed tests was investigated.

Model-Fitting Response Vectors

For each simulee, responses to dichotomous items were generated in the following way. The

procedure starts with randomly drawing a true ability 0 from the standard normal distribution.

P.(0) was computed according to the 2PL given in Equation 11. Then, a random number y

was drawn from U(0,1) and when P;(0) > y the response was set to 1, 0 otherwise. The first

three items of the test were selected with item parameter 13 around 0, and the ability parameter

was estimated using weighted maximum likelihood estimation (Warm, 1989) based on the

responses to the first three items. The next item selected was the item with maximum infor-

mation given the estimated ability O. Again, a response was generated, the ability was esti-

i2
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mated on the basis of previous item responses and the item with maximum information was

selected. This procedure was repeated until the test consisted of 20 items.

Types of Nonfitting Response Vectors

Two different types of nonfitting response vectors were simulated. The first type of nonfitting

vectors were generated with a two-dimensional ability parameter. Two values 01 and 02 were

drawn from the bivariate standard normal distribution. The correlations p=0.6 and p=0.8 were

used. During the first half of the test P, (0,) was used and during the second half P,(02) was

used to generate the responses.

The second type of nonfitting patterns were generated with violations against local sto-

chastic independence. Item scores were generated according to a generalized version of the

model proposed by Jannarone (1986). Let So+, be a parameter modeling association between

item, that is, the model can be written as

1)( X, = Xi, = xi+110) oc exp[xi (oc,.0 (13)

The fact that 8,,, models association is verified as follows. From the model in Equation 13,

the four possible realizations of (X,,X,,I) have the following probabilities

p(x, = o, xi+, =010) oc 1,

P(X,
=1,

X,, R ,

P( = 0, X = exp[a,0 13,], and

P( X; =1, = cc expRaie )+(cti+10i3i,,I)+45i,i+Ii

Above it was stated that a test could be based on statistics related to the parameters of an al-

ternative model. One could, for instance, construct a Lagrange Multiplier test (Aitchison and

Silvey, 1958), which is based on the derivative of the logarithm of the right hand side of

Equation 13 with respect to 8;,+,. The test boils down to evaluating the difference between L

and its expected value relative to its variance, all under the null model = 0. Since com-

puting the variance is quite complicated here, this approach will not be pursued, and we will

13
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proceed as follows. The conditional probability of item i+1, given the response to item i can

be written as

P(X, = x,, = x1,110)

p(x; =xi,x,+, =118)+P( X, , X ,+, =00.
(14)

Given the response to item i, the probability of a correct response to item i+1,

P(X,+, = 11X, ,0), was computed. If = 11X,,8) > y, where y-U(0,1), the response to item

i+1 was set to 1, 0 otherwise. For generating response vectors, the values 8=0.2 and E0.4

were used.

Generating distributions under Ho

For each response vector the realizations of T, L and X were computed. To generate the distri-

bution of the proposed statistics under the null model for each simulee, m response vectors

(replications) were generated according to the null model (RM or 2PL). By generating the

distribution of the statistics under the null model, it was possible to determine whether the ob-

served response vector was classified as fitting or nonfitting.

The m replications were generated using two different designs: a fixed design and a

stochastic adaptive design. First, the replications were generated according to a fixed design.

That is, for each replication the same items and the same test length were used. Let I be the

observed sequence of items the simulee responded to. In the fixed design approach the condi-

tional distribution of the observed response pattern X given the observed sequence of items I,

f (X11) , was generated. Second, in the stochastic design approach the replications were gener-

ated according to a stochastic adaptive design: given o , m response patterns were generated

according to the adaptive procedure described above. The weighted conditional distribution

f (X11) g(I) with g(I) the probability of I, was taken into account.

For determining the distribution of T, the probability of each possible combination of

(7) , T2) was determined as

P(t, , t2) = P(7; = t,,T2 = t )= gnumber of replications with (t1, 01.

14
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The sum of the probabilities of all replications with P( X, , X2) < ,t,), and

/3( X, , X2) > P(t,,t2) were determined, where

So = P(t,,t2) for all replications with P(X,,X2)<

S, = p(,,,t2) for all replications with P(X,,X2)> P(t,,t,), and

S2 = 1 11, H,

Then the probability p* = S, + uS, was determined, with uU(0,1). The observed response

vector was classified as nonfitting the model when p* 1 a or when p* 5 a .

For extreme values of L and X, that is L>cL, and X>cx, with cL and ex the (1-a)100%-

percentile of the m generated values of L and X respectively, the observed response vector x

can be classified as nonfitting the model.

The power of the test statistics T, L and X was defined as the percentage of response

patterns classified as non-fitting. The mean absolute bias was defined as the mean of the

absolute distances between 0 and e; mAB(e)=1,,,-le, A..)1, with j=1,...,m. The MAB was

taken into account to investigate the differences between the true ability 0 and the final estimated

ability A .

An empirical item bank of 1,000 items calibrated using the 2PL was used, where the

item parameters were estimated from real examination data in the Netherlands. For comparing

the distributions using a fixed and a stochastic design for. the Rasch model, an infinite item

bank with items fitting the RM was used, that is, it was assumed that the optimal item was

always present. The abilities were standard normally distributed: 0N(0,1). Let n be the num-

ber of response vectors simulated (simulees), and let m be the number of replications per

simulee generated (replications).

Results

Distribution of the Statistics

The first study was designed to assess the adequacy of using fixed design generation of statistics

in the case of stochastic design data. In Table 1, for the Rasch model with n=300 and m=1,000,

and using an infinite item pool, the distribution of significance probabilities of the statistics

15
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T, L, and X under the fixed and the stochastic generating approach are shown. Table 1 also

shows the values of Pearsons' chi-squared test X2. The expected percentages in all the cells are

10%, and the expected value of X2 is 9 (degrees of freedom). It can be seen that generation of

the distribution of the statistics using a fixed design does not give a good description of the

distribution under the null-hypothesis. This results in high X2 values: for all three statistics,

X2 >> 9. In the case of the stochastic design, the distribution of X and L are satisfying

according to the X2 values of 9.133 and 3.467, respectively. However, the distribution of T is

not completely satisfactory. The probability of 0.04 in the left tail is small compared to the

expected probability of 0.10; the result of this is a high X2 value of 24.8. Note, that the

probabilities of the statistics in the tails of the distribution are most important, because the tails

contain the fit values of aberrant response vectors.

Table 2 shows the distribution of the statistics for the 2PL with n=500 and m=1,000.

Again the fixed design does not give satisfactory results; the X2 values were highly significant

for all three distributions (not tabulated). This can also be seen in the tails: the left tail

probabilities of X, L, and T are 0.036, 0.050, and 0.032, respectively, the right tail probabilities

of X and L, 0.033 and 0.007, respectively. Thus, these probabilities are substantially smaller than

0.10. Furthermore, note that the right-tail probability of T is 0.298, which is too high. Table 2

also shows the distribution of the statistics under the stochastic design. In the case of the

stochastic design for X, L, and T the probabilities in the left tail were also too small: 0.045,

0.070, and 0.045. The probability in the right tail of the distribution of T was again too high:

0.185.

The estimated ability e is a point estimator and the precision of the estimation is

different for every Ô. When it was assumed that ability is normally distributed with mean 0 and

variance 1(0) , 0 /(0)), the uncertainty of 9 is taken into account. When for the

generation of the distribution m values of 9 were randomly drawn from N(9, /(6)), the

distributions of the statistics did not improve. These results are also shown in Table 2: again, the

X2 values were highly significant (not tabulated). The probabilities in the left tail for both X and

T were too small, 0.030 and 0.035, respectively, and the probability in the right tail for T (0.175)

was too high.

16
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Power Studies

The second study was designed to investigate the power of the statistics. Table 3 shows the

power of the statistics under the violations of the 2PL and the MAB for a 20 item test. Generally,

there was, hardly any power for all three statistics. This can be seen in the first column of Table

3, for example, for p=0.8 the test against multi-dimensional abilities T, classified only 8% of the

true nonfitting response as aberrant; thus, the power of T was 0.08. However, for p=0.6 the

statistic T classified 24% of the true nonfitting response vectors as aberrant. The test against

local dependence L, detected only 4% of the true nonfitting simulees for Z=0.4. However, the

estimated ability 0 , was rather robust against these model violations. The values of the MAB

under the model violations were not much higher than under the null model. The MAB

increased with 0.11 (from 0.34 to 0.45) for the multi-dimensional abilities with p=0.6.

Table 4 shows the power of the statistics under the model violations, and MAB for a 40

item test. Again, the test statistics had hardly any power. However, increasing the test length

from 20 to 40 items resulted for a two-dimensional ability parameter in a 23% and 25%

detection rate for p=0.8 and p=0.6 respectively. And the test against local dependence detected

27% of the true nonfitting simulees for Again 9was rather robust against the violations of

the model; in the worst case the MAB increased with 0.17 (from 0.25 to 0.42).

Discussion

The results with respect to the power of a person-fit test in a CAT suggests that tests against

local independence in the 2PL have little power, whereas the power for testing against

noninvariant abilities was relatively larger but still low. The low power in CAT compared to

conventional testing is not surprising because the overall variance of the item difficulties in CAT

is smaller than in conventional testing and it has been shown (Reise and Due, 1991) that the

smaller the variance of the item difficulties, the lower the power to detect nonfitting respondents.

From a practical point of view the relatively low power of a person test may not be much

of a problem if the 0 value is robust against some specific violations of the model. In that case, it

is not necessary to classify a simulee as nonfitting because the 0 provides a reasonable good

description of the testing behavior. In the context of a conventional test administration, there is

some evidence that low power goes together with small bias of 0. Using simulated data, Meijer

17
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and Nering (1996) showed that nonfitting responses may lead to biased estimation of 0, but that

the bias of 0 depends on the 9 level and the type and severeness of the nonfitting response

behavior. For example, they found that, for a 50 item test with 70% of the items fitting the 2PL,

and random response behavior on 30% of the items, the bias was approximately 0 for

whereas for 0=2 and 0=-2 the absolute bias was. approximately .9. The corresponding detection

rates were .25 for 01) and .55 for 0=2 and 0=-2. Thus, in that study the low detection rates at

0=0 did not seem to be much of a problem because the bias was approximately 0. If similar

results apply for CAT applications, it may be interesting to investigate the trade off between test

power and robust estimation of 0.

Nering (1995) generated nonfitting responses by changing a 1 score into a 0 score and

vice versa. Results showed that only for nonfitting response behavior in the beginning of the test,

the detection rates were acceptable. Using a .05 two-tailed error rate, when the location of the

response manipulation occurred within the first 5 items the detection rate was between .30 and

.70 .

One limitation of the present study was that true item parameters were used. In a real

testing situation item parameters must be estimated, and additional research is needed to

determine what influence this estimation process will have on 9 values estimated from different

procedures when nonfitting responses are present.

18
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